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Breakdown of perturbative nonlinear optics

• Harmonic generation in gases

• Multiphoton ionization

• Strong field effects

• Above threshold ionization 

• High Harmonic Generation

• Non-sequential double ionization

3 step model of High Harmonic Generation

1. Tunneling

2. Acceleration 

3. Recombination

4. Cutoff and plateau harmonics 

Summary
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Perturbative nonlinear optics:

Can we use these perturbative phenomena to generate short-wavelenght

pulses?

• Coherent sources where no lasing transitions are available

• Spectroscopy studies of matter with short pulses

• Table-top sources vs large facilities
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3Expected scaling law in the perturbative regime:

Pulse duration scaling: Intensity scaling:

To observe a high-order process the intensity has to be increased! 

- Possible to generate short pulses!

• Damage threshold of bulk optical materials ≈ 100 GW/cm²: only

gases can withstand higher intensities.
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Nonperturbative effects: Harmonic generation in gases

• At intensities approaching ≈1013 W/cm2 the perturbative description fails. 
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• Atoms can be ionized by a multiphoton process of high order!

• Photoelectrons and positive ions are created for ℏ𝜔 ∼ 1 𝑒𝑉 ≪ 𝑊𝐼 ∼ 10 𝑒𝑉

Electron detection : perturbative multiphoton ionization (MPI)

e-

𝑊𝐼
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• Keldysh parameter

• γ >1 perturbative MPI

• γ <1 non-perturbative ATI

Nonperturbative effects:  Above-threshold ionization (ATI)

• Photoelectrons and 

photoions emission
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Up ponderomotive energy:

Classical electron in a 

periodic E field:
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8Ionization saturation

• deviation from perturbative scaling

• saturation due to ground state depletion

saturation

Xe 

ionization 
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• Non-sequential double ionization (He)

• Evidence for “electron” re-scattering with to the parent ions

Mass spectrometer

Evidence of electron “recollisions”
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10Field ionization:

• At high intensities the electric field is comparable to the atomic Coulomb field

Atomic Coulomb field Laser field + atomic Coulomb field

• Other ionization channels appears: the electron has a non-zero probability of tunneling 

outside the barrier : “field ionization”

• Many strong-field phenomena can be qualitatively understood in term of semi-classical 

models
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• How can we understand the harmonic generation process in terms of tunneling?

• Why there is “plateau” in the efficiency?

• 2ω spacing?

• What determines the cut-off?

• What is the time structure of the harmonics? 

HHG spectrum

Cutoff
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12High-harmonic generation: three-step model

Recombination: emission of 

a high energy photon 

Valence electrons

𝐸𝑙𝑖𝑔ℎ𝑡~𝐸𝑣𝑎𝑙𝑒𝑛𝑐𝑒

Field ionization Acceleration in the field

Half-light cycle -> 2.7 fs/ 2 @ 800 nm

Peak intensities 1014 W/cm2: non-

perturbative nonlinear optics!
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13STEP 1 : Ionization in the strong field

Tunneling barrier

Tunneling “time”:

• Assume that electrons have a 

kinetic energy given by the 

binding energy (WI )

• Assume it has to travel a 

(field-dependent ) tunneling 

lenght
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In the limit of small γ, we can treat tunneling through the barrier as a quasi-static process

Keldysh parameter
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Crude approximation: rectangular energy barrier, stationary solution

Electric field appear in an exponential function!

More accurate:  ADK ionization rate (Ammosov Delone Krainov 1986)
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• Threshold-behaviour due to the tunneling probability

• Tunneling act as a fast (< half-cycle) shutter.

• Tunneling possible only for high field amplitude near the maximum
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STEP 2 – acceleration in the field

• A classical description give good physical insights: 

the coulomb potential is completely neglected

compared to the laser field

• A more rigorous QM theory (Strong-field 

approximation) center of mass motion of the 

electron wavepackets follow classical trajectories
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• The recollision time as a function of t’ can be determined by the equation x(t)=0

Equivalent form of x(t)=0

Graphical solution:
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• Physical interpretation of the 

graphical solution: 

• ion moving in an oscillatory 

frame (x’=x-x0sin(ω0t) )

• Electron performs a linear 

trajectory

Kramer-Hennerberger frame of reference
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20• Kinetic energy depend on the path in the field

• ≈0.5 cycles = 1.3 fs@ 800 nm (FWHM < 1 fs)

• “atto-chirp”

Long and short trajectories
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STEP 3: recombination

• This step determines the efficiency of the process.

• Quantum diffusion of the wavepacket

• The probability depends on the atomic species: heavier noble gases have higher probability

• Electron localized at ionization r┴ ≈ atomic radius

• Transverse velocity spread from position-

momentum uncertainty

• Wavefunction width increases with time 
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Emitted 

photon 

energy:

The emitted photon energy and the cut off law
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• The probability of recombination

decreases with the  driver 

wavelength: short wavelenght are 

more efficient

Wavelenght scaling of HHG:

• Ponderomotive energy increase with the driving wavelength: higher cutoff
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• Why do we observe harmonics in the frequency domain?

• Our model shows that for every  half light cycle there is a 

burst of short wavelength radiation, with a maximum 

energy detemined by the cutoff
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25High order harmonics, attosecond pulse train

Time domain structure: periodic train burst of 

radiation which last less than half-cycle 

Broadband XUV pulses with T/2 periodicity 

(frequency 2ω )

Destructive interference between the 

continua emitted every half cycle in the 

inversion symmetric medium

Frequency domain : Frequency 

comb of odd harmonics.
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26Ground state depletion: Ionization fraction

• For high intensity pulses with many 

cycles the leading edge ionizes the 

medium fully

• Few-cycle pulses are necessary to 

extend the cutoff!
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CEP effects with few cycle pulses
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• Increase the field by shortening the pulse

C k-edge (280 eV)
Coherent EUV in the 

«water window»

Extending the HHG cutoff
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