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Summary

Breakdown of perturbative nonlinear optics
* Harmonic generation in gases
* Multiphoton ionization
» Strong field effects
» Above threshold ionization
* High Harmonic Generation
* Non-sequential double ionization

3 step model of High Harmonic Generation
1. Tunneling
2. Acceleration
3. Recombination
4. Cutoff and plateau harmonics
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Perturbative nonlinear optics:

P=g[xVe+x? e +xV € +.]

Can we use these perturbative phenomena to generate short-wavelenght
pulses?

« Coherent sources where no lasing transitions are available
« Spectroscopy studies of matter with short pulses
« Table-top sources vs large facilities
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Expected scaling law in the perturbative regime:

10°
1,<1012 W/cm? P = [xVe+xPE + 4P &+ ]
107" 5
E 1072 Intensity scaling: Pulse duration scaling:
= 3
g 3]
= 107 =
£ 7 ERTURBATIVE Lo, (t) o I2(t) Tow = —2
2 10 SthLINE V2
i { |
£ 1073 q T,
[t (E) roo= Y
] qw qw
1077 3 V4
1077 - T T LA L A B L B i
0 5 10 15 20 25 - Possible to generate short pulses!
Harmonic order
. . . . C
To observe a high-order process the intensity has to be increased! Iy = __Ei =4 x 1016 W/sz
» " X (w) c 8
e e
SO S U S :
_PVL—I z((h—l) Eot a; (h*/me?)? Tot 10 Womt
£ o "
« Damage threshold of bulk optical materials = 100 GW/cmz: only 7ot

gases can withstand higher intensities.
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cPrL Nonperturbative effects: Harmonic generation in gases

gas expansion
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» At intensities approaching =102 W/cm? the perturbative description fails.
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Electron detection : perturbative multiphoton ionization (MPI)

« Atoms can be ionized by a multiphoton process of high order!
« Photoelectrons and positive ions are created for hw ~ 1 eV K W; ~10eV
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Nonperturbative effects: Above-threshold ionization (ATI)

electron detector
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U, ponderomotive energy:

Classical electron in a dv

periodic E field: Me o =eEpcoswt X (0)=0
' V(o) =0
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lonization saturation

KELDYSH parameter
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ion detector
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deviation from perturbative scaling
saturation due to ground state depletion
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Evidence of electron “recollisions”
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» Non-sequential double ionization (He)
» Evidence for “electron” re-scattering with to the parent ions
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Potential (a.u.)

Field ionization:

» At high intensities the electric field is comparable to the atomic Coulomb field

1.0

0.0 4

1.0 1

hv

Potential (a.u.)

—1.0 ] T T T T T T T T T T T T T T T T T T
-1 -10-9-8-7-6-5-4-3-2-10 12 34567 8 910

Distance (a.u.) Distance (a.u.)
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Other ionization channels appears: the electron has a non-zero probability of tunneling
outside the barrier : “field ionization”

Many strong-field phenomena can be qualitatively understood in term of semi-classical
models
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HHG spectrum
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Harmonic order

How can we understand the harmonic generation process in terms of tunneling?

Why there is “plateau” in the efficiency?
2m spacing?
What determines the cut-off?

What is the time structure of the harmonics?

Cutoff
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High-harmonic generation: three-step model

Peak intensities 10 W/cm?: non- )
perturbative nonlinear optics! Laser field

Coulomb potential

Valence electrons
Elight~ valence !
Field ionization Acceleration in the field

Recombination: emission of
a high energy photon

A
\ 4

Half-light cycle -> 2.7 fs/ 2 @ 800 nm
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Tunneling “time”:

STEP 1 : lonization in the strong field

V() | Ep
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b= Wi /(eEp)
Assume that electrons have a \

kinetic energy given by the
binding energy (W, ) oy = b v/meWy
0= —
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(field-dependent ) tunneling
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Keldysh parameter
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In the limit of small y, we can treat tunneling through the barrier as a quasi-static process
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Crude approximation: rectangular energy barrier, stationary solution
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Electric field appear in an exponential function!

More accurate: ADK ionization rate (Ammosov Delone Krainov 1986)

TABLE 4.2 The ADK Parameters

He
Ne
Ar
Kr
Xe

Fo (a.u.)

242946
1.99547
1.24665
1.04375
0.84187

n*
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0.7943
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1.05906

I
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Threshold-behaviour due to the tunneling probability
Tunneling act as a fast (< half-cycle) shutter.
Tunneling possible only for high field amplitude near the maximum
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=PrL STEP 2 — acceleration in the field

* A classical description give good physical insights: s
1.0 . .
the coulomb potential is completely neglected

7 compared to the laser field

E * A more rigorous QM theory (Strong-field

é oo approximation) center of mass motion of the

E§ electron wavepackets follow classical trajectories
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The recollision time as a function of t' can be determined by the equation x(t)=0

Equivalent form of x(t)=0

Graphical solution:

o
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=PrL Kramer-Hennerberger frame of reference

1.0 1=

e
o
1

* Physical interpretation of the
graphical solution:
* ion moving in an oscillatory
frame (X'=x-X,Sin(wt) )
« Electron performs a linear

Displacement (normalized)
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Long and short trajectories

Electron
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Return energy, W, [in units of U

Kinetic energy depend on the path in the field
=~0.5 cycles = 1.3 fs@ 800 nm (FWHM < 1 fs)
“atto-chirp”

Recolliding electron trajectories, x(f)
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Electron localized at ionization r. = atomic radius

STEP 3: recombination

* This step determines the efficiency of the process.

« Quantum diffusion of the wavepacket

Transverse velocity spread from position-
momentum uncertainty

V] =

h

mer |

Wavefunction width increases with time

1.0

0.8

0.6

0.4

0.2

Return
electron

0.0

The probability depends on the atomic species: heavier noble gases have higher probability
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=PrL The emitted photon energy and the cut off law
Emitted
photon
: |
energy: . . 2
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Ecut ~ Ip + 3-2up
‘ (
a) L
CUtOﬁ 3‘50.00 0.| 5 . 0.|10 . O.|15 . 0.I20 . 0.25
1 — Numerical
> plateau (3.17U,*+W))/h 10 ~ | sumeral
.(7} 2w i \\\
Q c 2.5 - \
Q (0] - | , |
o I= S \
g = 8 20-
é ‘jL"_), 1.5 . ‘\\
% .?E:J 7 \\
% - M 1.0 T \\\\
- 0.5 -
o HHG frequency
I 0.0 T T T T T T
2 0.00 0.05 0.10 0.15 0.20
- Emission phase (27 rad)

N
N

Michele Puppin



=Pr

B PHSY761 — Advanced Radiation Sources - 2023

L

Wavelenght scaling of HHG:

* Ponderomotive energy increase with the driving wavelength: higher cutoff

1, 1800 nm

I/ Wecm™

The probability of recombination
decreases with the driver
wavelength: short wavelenght are
more efficient
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intensity

« Our model shows that for every half light cycle there is a
burst of short wavelength radiation, with a maximum

energy detemined by the cutoff

»

a < o
@) cutoff ’g I (b)
plateau 347U +W)/h o< 8T |
( ptW)) 2 [rar | | H43
-~ 5o [ | ’
o
” 9 \ ; | '||‘1||M H55
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26 24 22 20 18 16 14
HHG frequency wavelength / nm

* Why do we observe harmonics in the frequency domain?
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E-field

b)

Intensity

High order harmonics, attosecond pulse train

—>] K— At of attosecond burst

Fundamental A
laser .~

HHG spectra

Frequency

Time domain structure: periodic train burst of
radiation which last less than half-cycle

Broadband XUV pulses with T/2 periodicity
(frequency 2w )

Destructive interference between the
continua emitted every half cycle in the
inversion symmetric medium

Frequency domain : Frequency
comb of odd harmonics.
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E{‘Hf ~ Ip + 3-2up Up — m
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Ground state depletion: lonization fraction

Ne(t) = N3 [1 — exp (— f Fion(r")dr’)}

Ne/ Naom

=

-200 =100 0 100 200
TIME t (fs)
* For high intensity pulses with many

cycles the leading edge ionizes the
medium fully

TIME t (fs)

Few-cycle pulses are necessary to
extend the cutoff!
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Soft-X-ray spectral intensity (a.u.)

CEP effects with few cycle pulses

Fig. 8.4. Measured EUV spectra from neon at 16 000 Pa (160 mbar) pressure. Excitation is

with 5-fs pulses around fiwp = 1.5V and at an estimated intensity of I = 7 x 1014 W/cm2.
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Intensity (arbitrary units)
1O = N WA NN 0o

—
(%)

Extending the HHG cutoff

* Increase the field by shortening the pulse
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